

Scaling, Asphaltenes, near-wellbore damage and how to study

What is scale and scaling?

Organic scales (asphaltenes) Scales – organic and inorganic

What does scale look like in the reservoir?

Inorganic inhibition

Inorganic scaling prediction

What is scale?

Inorganic:

- ▶ From formation brine, introduced water, or both
- ➤ Salt deposit, with precipitation caused by chemical reactions (incompatibility), change in conditions (temperature, pressure, pH), fluid composition, reaction with surfaces
- So can occur throughout the life cycle, production & injection

Organic (asphaltenes):

- From hydrocarbon
- Solid portion (colloidal) of hydrocarbons, precipitated by saturates and dissolved by aromatics. Precipitation caused by change of conditions (bubble point), changes in chemistry, shear, acids
- So not just a production problem

What they look like

Inorganic scaling: understanding

3 stages:

- ➤ Prediction: does it happen, what sort of scale are we seeing?
- ► Mitigation: what inhibitors can help with the problem?
- ► Evaluation: do the inhibitors work, do they have any side-effects?

Scale prediction modelling

		% Completion Fluid						
Scaling Index (Saturation Level)		0	16.67	33.33	50	66.67	83.33	100
Calcite	CaCO ₃	28.63	17.26	11.54	6.67	41.89	0	0
Aragonite	CaCO₃	31.09	18.74	12.53	7.24	45.48	0	0
Witherite	BaCO₃	0	0	0	0	0	0	0
Strontianite	SrCO ₃	2.1	0.535	0.132	0.0173	0.00144	0	0
Magnesite	MgCO₃	113.07	86.97	68.98	44.76	107.03	0	0
Anhydrite	CaSO ₄	1.59	0.772	0.987	1.8	6.94	0	0
Gypsum	CaSO₄*2H₂O	0.43	0.179	0.184	0.231	0.111	0	0
Barite	BaSO ₄	0	0	0	0	0	0	0
Celestite	SrSO ₄	0.321	0.066	0.0311	0.0129	<0.001	0	0
Tricalcium phosphate	Ca ₃ (PO ₄) ₂	0.406	0.17	0.263	1.11	565.57	0	0
Hydroxyapatite	Ca ₅ (PO ₄) ₃ (OH)	0.965	0.161	0.297	3.36	104135	0	0
Fluorite	CaF ₂	0	0	0	0	0	0	0
Silica	SiO ₂	0	0	0	0	0	0	0
Brucite	Mg(OH) ₂	4.29	2.1	2.25	4.38	11.94	0	0
Magnesium silicate	MgSiO₃	0	0	0	0	0	0	0
Ferric hydroxide	Fe(OH)₃	1170	360.48	146.86	61.36	4.18	0	0
Siderite	FeCO₃	16.27	8.21	2.61	0.399	0.04	0	0
Strengite	FePO ₄ *2H ₂ O	1.63	1.17	0.558	0.144	0.00144	0	0
Halite	NaCl	0.00268	0	0	0	0	0	0
Thenardite	Na ₂ SO ₄	<0.001	<0.001	<0.001	<0.001	<0.001	0	0
Iron sulphide	FeS	0	0	0	0	0	0	0

Scale prediction modelling

Fluid compatibility incubation tests

Scale precipitate at left (90:10, 75:25, 50:50 water 1:water 2)

Consider different mixes too!

Scale inhibitor testing

- Static jar tests and dynamic scale loop tests carried out to determine the efficiency of scale inhibitor chemicals
 - Static jar tests examine long residence times
 - > Dynamic loop tests examine short residence times
 - > Establishes the minimum inhibitor concentration (MIC)
- Coreflood simulations to examine proposed treatment fluids
 - Simulations to examine inhibitor return profile
 - Simulations to examine formation damage mechanisms

Dynamic tube blocking

Reservoir-conditions simulations

Scale Inhibitor lifetime (desorption)

Scale Inhibitor lifetime (desorption)

Coreflood	Generic inhibitor type	Retention mechanism	MIC (ppm)	Throughput to reach MIC (PV)	
No 1	sulphonated co-polymer	precipitation	4.7	750	
No 2	phosphonated poly amine	adsorption	4.8	2250	
No 3	penta phosphonate	adsorption	3.8	2020	
No 4	penta phosphonate	precipitation	2.8	1300	
Test Conditions		•		•	
Temperature	100 °C	Flow rate 60 ml/h			
Confining pressure	1000 psia	Shut-in 24 hrs			
Initial saturation	Sor				

Don't forget inhibitor sequence compatibility!

Formation Damage simulation studies

- Severe reduction in permeability (c60%)
- What caused that alteration?

New visualisation techniques show us more

Formation Damage simulation studies

- Combination of changes = severe reduction in permeability (c60%)
- Clay: some removal, some accumulation
- Inhibitor: fluid retention, particularly associated with clay minerals
- Overall: reduction in pore volume
- Result: suitable chemical?

Summary: inorganic scale studies

- Scale prediction modelling (computer simulations)
- ➤ Static fluid compatibility (jar) tests
- ➤ Modelling of candidate inhibitor types
- Selection of inhibitor (vendor)
- Repeat fluid compatibility with candidate inhibitors
- ➤ Dynamic tube blocking
- Coreflood studies for squeeze efficacy/lifetime
- Coreflood studies for scale inhibitor compatibility

Organic precipiates: asphaltenes

- Asphaltene chemistry is complex and depends on a number of factors:
- Asphaltenes exists as three major structural forms (Yen-Mullins model)
 - Molecular
 - Nanoaggregate

General asphaltene correlation to oil grade

- Larger asphaltene structures tend to exhibit greater instability
- So heavy oil greatest risk but many factors contribute

Coreflood Simulations for asphaltene deposition

- Inject live fluids
 - Gradual pressure depletion to precipitation onset
 - ► Fluid-fluid interactions
- Permeability decrease & wettability alteration
 - Deposition at coreflood injection face
 - Deposition throughout core plug
- Is there deposition? Examine dissolvers and repeat study

Visualising areas of asphaltene deposition

Summary: organic scale studies

- ▶ Bottom Hole Sampling
- Crude Oil and Water Characterization
- PVT Fluid Properties, depletion, onset flocculation phase envelopes, Aasays of composition for potential recombination
- Other fluid analyses: GC/MS, ICP, IR, oil in water, solids, water chemistry
- ► Fluid/fluid incubation bottle tests
- Onset of flocculation precipitation
- Asphaltene Inhibition dosage bottle tests
- Asphaltene inhibition flocculation dosage tests
- Rock flowrate dependency due to pressure drop and or flowrate simulations investigating streaming potential and or fines migration solids movement
- Rock/Fluid/Fluid compatibility simulations various excluding and including full well operations sequence
- Asphaltene inhibitor treatment in the near-wellbore (evaluation for compatibility)
- Standalone fines migration without asphaltene inhibitor as a comparison.
- Nano CT investigation for deposition in all core flood simulations
- ▶ Pore lining Cryogenic SEM for all coreflood simulations

Final thoughts

- Scaling (inorganic and organic) can have a significant impact upon inflow
- So it's not a scientific study: there is a real-world use for understanding what might be happening
- ► If we can understand the types of scale & conditions that they form under, we can move towards removing or avoiding them. Inhibitors and dissolvers exist!
- ► How to avoid issues?
- ➤ We need to understand our specific reservoir & conditions
- ➤ Simple: study, understand, look at options & solutions
- ➤ Just because something has worked elsewhere, or "should" work here, doesn't mean that it will. Each reservoir is unique in physical and chemical properties

Any Questions?

Ask Justin

Contact details:

Justin Green
Formation Damage Consultant
jgreen@corex.co.uk
www.pofg.com/corex

