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What is Artificial Intelligence?

• Getting computers to imitate human intelligence – Alan Turing 

• AI is data analysis that learns from data, identify patterns and 

makes predictions with the minimal human intervention

• First generation AI: Expert or Rule based systems

– Simple petrophysics 

– IBM’s Deep Blue, beat chess Grandmaster Garry Kasparov in 1997

• Second generation AI: Machine learning

– Evolution of water saturation equations, NMR spectra analysis

– Google’s AlphaZero, self-taught computer program, easily beats all first-
generation AI

• Third generation AI: The evolution of machine code

– Using similar rules as used by life’s DNA code

– True AI with general intelligence



AI requirements

• You tell the AI what you want

– The goal or fitness function

• The data 

• Minimal human interaction

– Doesn’t require prior knowledge of the petrophysical 
response equations 

– No parameters to pick or xplots to make



AI is given access to the data 

These include:

• Electrical logs - GR, Rhob, caliper, drho etc.

• Core data - porosity, core Sw, SCAL etc.

• Depth - measured and TVDss 

• Gas - chromatography data 

• Drilling data - ROP, Dexp etc.

• NMR - T1 & T2 distributions

• etc.
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Second Generation AI

• We define the problem - Fitness Function

• We give the program access to the data

• The computer guesses the answer and through successive 

iterations (generations) ‘evolves’ the best answer

Randomly change the computer code

Does it solve the problem better ? 

Is it fitter?
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Middle East Carbonate Reservoir

• Case Study 1

• Client required a shaly sand 
equation to derive water 
saturation from the resistivity and 
gamma-ray logs 

• Client wanted an independent 
check of the Special Core 
Analysis parameters ‘m’ and ‘n’

• Core water saturation available
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• Fitness Function – “determine an equation so that the 

resistivity predicted water saturations are as close as 

possible to core derived water saturations”

• AI may ‘re-invent’ the Indonesia or Simandoux equations or 

create a specific equation for the field

• Start by assuming Sw = Function (Porosity, Resistivity, 

Volume of shale)
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Middle East Carbonate Reservoir

• Core water saturations essential

• Fitness Function 

- “Find the best shaly sand equation 

so that the resistivity derived Sw 

matches the core Sw”

• Result:

• Special Core Analysis from AI:

- Cementation exponent (m) 2.214 

- Saturation exponent (n) 1.751
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Sw = water saturation 

 = porosity 

Rt, Rw = resistivities 

Vsh = shale volume

m,n,b,c = constants



NMR Pattern 
Recognition 

• Case Study 2

• UKCS gas field with 

an oil problem

• Data:

– Conventional logs

– NMR T1 and T2

– Gas Chromography 

– Core derived oil and 

gas saturations
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Case Study 2 – NMR Pattern Recognition 

• A gas field with an oil problem

• Residual oil pockets remain within the main gas reservoir 

• This oil is highly viscous

• If produced could block up production tubing

• The client needs to identify oil and gas in order to only 

perforate the gas zones

• Conventional petrophysical techniques like density / neutron 

porosity separation can’t differentiate oil and gas due to thin 

beds and shaly formation 



• The problem solved with nuclear magnetic resonance (NMR)

• This measures how hydrogen atoms respond to a magnetic field

Nuclear Magnetic Resonance



• Conventional NMR methods uses the Coates or Schlumberger-

Doll-Research (SDR)

• These use very little of the wealth of information contained in the 

T2 spectrum!

Oil and Gas identification using NMR



• AI determines the NMR spectra (waveforms) associated with core derived 

oil and gas analysis 

• It then predicts the fluid content of all the reservoir beds 

• Fitness Function: “Determine the wave-forms that give the best match 

between the log and core derived oil and gas saturations in the reservoir” 

Oil and Gas identification using the NMR and AI



Results – Real time identification of gas and oil zones
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Case Study 3 Shear Velocity Prediction using AI
Water

Sand 

Shale 

Caliper

Gamma Ray Shear

Recorded Sonic

Compressional

• North Sea Field 

• Only four wells have recorded 

shear velocity data

• Shear velocity is required on all 30 

wells



Shear Velocity Prediction using AI
Water

Sand 

Shale 

Caliper

Gamma Ray Recorded

AI Shear 

Recorded Sonic Predicted

Compressional

ShearFitness Function – “Determine a 

relationship so that the predicted shear 

velocities are as close as possible to log 

derived shear velocities”

Shear velocity = Function of:

- Conventional logs

- Drilling data

- Gas chromography data

The AI gives the relationship

The AI predictions are better than the 

recorded logs!



Permeability Prediction 

• Case Study 4 - North Sea 

Field

• AI first predicts facies type

• Permeability then predicted 

based on facies type and 

other all logs

• Is the AI permeability any 

better than from regression 

analysis?

AI 
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AI predicts permeability that upscales correctly

• Log and core permeabilities represent typically 2 feet

• To be used in a reservoir model the predicted permeabilities          

must upscale correctly 

• They must have the same dynamic range as the core data

• Least square methods regresses toward the mean

• AI preserves the dynamic range 

Core Permeability Predicted Permeability  

0.01       (mD)      1000 0.01       (mD)      1000



Core Permeability Distributions

• Permeability frequency plots (mD - log scale) 

- Colour represents data from 15 cored wells

• AI predicted permeability matches core distribution  

• Regression permeability techniques are poor at the 
extremes and therefore will be incorrect when upscaled

Core distribution  AI prediction Linear Regression 

Frequency Histogram of CORE.CKHL_NC
Well: 15 Wells

Range: All of Well
Filter: CKHL_NC>0.001
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Case Study 5 – Quality Control and Repair of Electrical Logs

• It is essential to confirm log quality before they used by the 
petrophysicist 

• AI automatically identifies and repairs poor logs

– Washouts

– Gaps

– Poor readings

• Doesn’t require a skilled user

• Baker Hughes developed free AI software 



Quality Control and Repair of Electrical Logs



Quality Control and Repair of Electrical Logs



Quality Control and Repair of Electrical Logs



Advantages of AI in Petrophysical Analysis 

• AI doesn’t require prior knowledge of the petrophysical 
response equations 

• AI is self-calibrating.  Just give it the data

• AI avoids the problem of “rubbish in, rubbish out”, 

– by ignoring noise and outliers



Linear Regression

• AI finds relationships in the data in order to make predictions

• Least squares regression is often used 

• This minimises the sum total of the square of the errors 



Linear Regression

• Least squares regression is undemocratic

• Outliers unfairly influence the result 

• A point 10 times further from the line has 

a 100x the weighting

• It is very difficult to manually remove 

these and would introduce human bias

• Outliers may be valid data

• Best keep them and minimise the linear 

distance rather than the squared distance

• Random noise should be swamped by 

valid data



Advantages of AI in Petrophysical Analysis 

• AI doesn’t require prior knowledge of the petrophysical 
response equations 

• AI is self-calibrating.  Just give it the data

• AI avoids the problem of “rubbish in, rubbish out”, 

– by ignoring noise and outliers

• There is very little user intervention 

– There are no parameters to pick or cross-plots to make

• AI programs work with an unlimited number of electrical logs, 
core and gas chromatography data; and don’t ‘fall-over’ if 
some of those inputs are missing

• It is not a Black Box as it provides insights into how it makes 
predictions



Narrow vs. General AI

• Narrow AI is like apps on your smart phone

– Forecasts the weather, converts currencies

– Orders coffee for you

• General AI, like humans can do many things

– Play chess and do petrophysical analysis  

• General AI

– Learns from one specialist area and applies in another

– They will be genuinely creative with the ability to produce 
something original and new

– General AI is True AI



Third Generation AI

• AI programs currently being developed include ones 
where their machine code evolves, using similar rules 
used by life’s DNA code



Evolution in Nature

• Charles Darwin - The origin of species by means of natural 
selection

• DNA language code - 4 characters - A, T, C, G

DNA

Code

Mutation and mating

Survival of the fittest



Evolution in Nature

• Feedback loop – takes millions of years

DNA

Code

Mutation and mating

Survival of the fittest

Extinction

The fittest

Less fit



Third Generation AI

• Just define the problem to be solved – Fitness Function

Computer Code

Mutation and mating

Survival of the fittest

A language of 2 

characters



Third Generation AI

• Let the machine code mutate and mate using the Rules of Life

Computer Code

Change code

Is it better at solving the problem?

Delete

No

Keep

Yes



AI requirements

• Data

• Fitness Function

– Tells the AI what you want it to do

– Written in plain English

– Does the AI understand what you really want?



King Midas and his golden touch

• King Midas, in Greek mythology, was granted his wish that 
everything he touched into gold

• He didn’t realise that this included his food and his children

• Similarly an ill-conceived Fitness Function may give 
unexpected results



The sorcerer’s apprentice 

• The apprentice uses magic to get a broom carry water for him

• Unfortunately it runs-away and nearly drowns him

• Similarly a runaway AI may not be stoppable 

• An example from petrophysics



• History matching

• Fitness Function – “get the best match as fast as possible”

Example of Runaway AI



Example of Runaway AI

• By trial and error the computer will evolve a fast history match

• Any endeavour succeeds faster if you increase its resources

• A human programmer / hacker may co-opt the resources of 
other network computers to achieve the faster speed

• There is no reason why AI couldn’t also doing this

• If AI achieves this ‘by accident’- there is nothing to stop it doing 
it again and again

• Evolution takes millions of years

• The computer makes millions of iterations per second



Runaway AI

• The AI may ‘accidently’ start improving exponentially 

• A supercomputer isn’t required to do this

• An elaborate computer program isn’t required 

– Only one that can update its own machine code

– Only one with an ill-judged Fitness Function

• This is known as the singularity where artificial intelligence 
becomes uncontrollable and irreversible

• The chances of this happening may be as remote as life 
spontaneously occurring 

• AI has only to do this once

• It is not known how to stop computers with run away evolution 



The Dangers of AI

• Professor Stephen Hawking (University of Cambridge Professor)

– “Efforts to create thinking machines pose a threat to our very existence“

• Bill Gates (Microsoft co-founder) 

– “Humans should be worried about the threat posed by artificial Intelligence”

• Nick Bostrom (University of Oxford Professor)

– “We’re like children playing with a bomb”

• Elon Musk (SpaceX founder)

– “AI needs safety measures before something terrible happens”



Solution to Runaway AI 

• These AI programs pose considerable dangers far beyond the 
oil industry 

• A ‘risk assessment’ is essential on all AI programs so that all 
hazards and risk factors, that could cause harm, are identified 
and mitigated

• The possibility of a runway AI, in the near term, is remote

• But the consequences could be greater than climate change 
and nuclear proliferation 

• A risk assessment need only take a few minutes

• AI programs are potentially dangerous and may be the last 
thing humans invent



Conclusions

• AI can make petrophysical analysis very easy 

• AI can be very dangerous

– AI program development should include a risk assessment

• Questions? 


