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The Benefits and Dangers
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Outline

What is Al?

Case studies showing successful applications

Benefits of using Al

The grave dangers of using Al




What is Artificial Intelligence?

Getting computers to imitate human intelligence — Alan Turing

Al is data analysis that learns from data, identify patterns and
makes predictions with the minimal human intervention

First generation Al: Expert or Rule based systems

— Simple petrophysics

— |IBM’s Deep Blue, beat chess Grandmaster Garry Kasparov in 1997
Second generation Al:  Machine learning

— Evolution of water saturation equations, NMR spectra analysis

— Google’s AlphaZero, self-taught computer program, easily beats all first-
generation Al

Third generation Al: The evolution of machine code

— Using similar rules as used by life’s DNA code
— True Al with general intelligence



Al requirements

* You tell the Al what you want
—The goal or fithess function

 The data

« Minimal human interaction

— Doesn’t require prior knowledge of the petrophysical
response equations

— No parameters to pick or xplots to make



Al Is given access to the data

These include:
 Electrical logs - GR, Rhob, caliper, drho etc.

« Core data - porosity, core Sw, SCAL etc.
* Depth - measured and TVDss

« Gas - chromatography data
 Drilling data - ROP, Dexp etc.

« NMR - T1 & T2 distributions

* eflc.



n-dimensional Data
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Second Generation Al

* We define the problem - Fitness Function

« We give the program access to the data

* The computer guesses the answer and through successive

iterations (generations) ‘evolves’ the best answer

Computer
Code

—

Yes

Keep

Randomly change the computer code

M

Does it solve the problem better ?
s it fitter?

W o

lgnore



Middle East Carbonate Reservoir

Porosity Water h il Water
. 1 %
Log Porosity Saturation ﬁ Matrix
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Case Study 1 =

X10

Client required a shaly sand
equation to derive water
saturation from the resistivity and
gamma-ray logs

X20 { -

X30

Client wanted an independent .
check of the Special Core x40 |
Analysis parameters ‘m’ and 'n’

x50

Core water saturation available




Saturation Equation Determination

* Fithess Function — “determine an equation so that the
resistivity predicted water saturations are as close as
possible to core derived water saturations”

« Al may ‘re-invent’ the Indonesia or Simandoux equations or
create a specific equation for the field

 Start by assuming Sw = Function (Porosity, Resistivity,
Volume of shale)

SW=n

aRw

Rtg"

1

=

"

V(l Vsh/2) ¢m/2
JR& "R,

:|Sn/2

Sw = Water saturation
o = Porosity

Rt, Rsh, Rw = Resistivities

Vsh = Volume of shale

a,mn = constants unknown



Middle East Carbonate Reservoir

 Core water saturations essential

 Fithess Function

- “Find the best shaly sand equation
so that the resistivity derived Sw

matches the core Sw”

 Result:
1 ¢"Sw'
Rt Rw

+ bVsh®

Sw

¢

= water saturation
= porosity

Rt, Rw = resistivities

Vsh

= shale volume

m,n,b,c = constants

« Special Core Analysis from Al:
- Cementation exponent (m) 2.214

- Saturation exponent (n)

1.751

Resistivity

Tl 2000

DEFTH
FEET

Porosity

Log Porosity

Water
Saturation

Al
Sw

035

Core Porosity

Core Sw
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DT Nuclear Magnetic Resonance
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Case Study 2 — NMR Pattern Recognition

A gas field with an oil problem
Residual oil pockets remain within the main gas reservoir
This oil is highly viscous

If produced could block up production tubing

The client needs to identify oil and gas in order to only
perforate the gas zones

Conventional petrophysical technigues like density / neutron
porosity separation can’t differentiate oil and gas due to thin
beds and shaly formation



Nuclear Magnetic Resonance

12 cutoft

Amplitude

i1 Lo 1. 100 T L.

T2 Time I I
Rock Bulk Volume
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Capillary bound

water

Hydrocarbons

Effective Poro

* The problem solved with nuclear magnetic resonance (NMR)

« This measures how hydrogen atoms respond to a magnetic field



Oil and Gas identification using NMR

12 cutoft
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« Conventional NMR methods uses the Coates or Schlumberger-
Doll-Research (SDR)

* These use very little of the wealth of information contained in the
T2 spectrum!



Oil and Gas identification using the NMR and Al
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Al determines the NMR spectra (waveforms) associated with core derived
oil and gas analysis

It then predicts the fluid content of all the reservoir beds

Fitness Function: “Determine the wave-forms that give the best match
between the log and core derived oil and gas saturations in the reservoir”



Results — Real time identification of gas and oil zones

A Interpreted as high
oil saturation, low
gas saturation
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shear velocity data 1
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Shear Velocity Prediction using Al

Fitness Function — “Determine a
relationship so that the predicted shear
velocities are as close as possible to log
derived shear velocities”

Shear velocity = Function of:
- Conventional logs
- Drilling data

- Gas chromography data

The Al gives the relationship

The Al predictions are better than the
recorded logs!

Caliper

= 1
Gamma Ray
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Permeability Prediction

Case Study 4 - North Sea
Field

Al first predicts facies type

Permeability then predicted
based on facies type and
other all logs

Is the Al permeability any
better than from regression
analysis?
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Al predicts permeability that upscales correctly

* Log and core permeabillities represent typically 2 feet

* To be used in a reservoir model the predicted permeabilities
must upscale correctly

* They must have the same dynamic range as the core data

0.01 (mD) 1000 0.01 (mD) 1000
Core Permeability Predicted Permeability

 Least square methods regresses toward the mean

* Al preserves the dynamic range



Core Permeability Distributions

Core distribution Al prediction Linear Regression

« Permeability frequency plots (mD - log scale)
- Colour represents data from 15 cored wells

« Al predicted permeability matches core distribution

* Regression permeability techniques are poor at the
extremes and therefore will be incorrect when upscaled



Case Study 5 — Quality Control and Repair of Electrical Logs

It is essential to confirm log quality before they used by the
petrophysicist

Al automatically identifies and repairs poor logs
— Washouts

— Gaps

— Poor readings

Doesn’t require a skilled user

Baker Hughes developed free Al software



Quality Control and Repair of Electrical Logs
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Quality Control and Repair of Electrical Logs
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uality Control and Repair of Electrical Logs

“
| = Graphical display and manupulati EnL

=N BN - J_" @ @ L 2 .) 3= 9 x [0 & [showaxes [v] Repairzoom [+] Show paints

- @
S *, Normal - [ Show all
I E Bad hole \ > LHEenE (4 BAD + Repair + Repair Al x Set washouts = Lo : | Show all axes
I Rk Select — Zoom into repair track
Return Zones Unzoom ®) cooD Reset “) Resetall | Tolerance - Copy chart  Print Preview
I ¥ o) Manual K4 e to dipboard  and Export Show points
V] Strata A Modes 4 Select Mode Options 4 Entire Log 4 Utilities A

All curves configured for display in the main screen's "Assigned curves' grid are shown here, alond with a SYNTHETIC and REPAIRED curve. Bit curves can be
optionally displayed on every track by clicking the 'Bit Size' labels above each frack. All changes made to the REPAIRED curve are saved to the database

RHOB G/C3 } OHMP AHTE0 OHMM___| DT US/F 1C4 PPM CALLIN
Unused Unused C2FPM | AHT20 OHMM AHTS0 OHMM GR_GAPL IC5 PPM MPHI by
Repaired Synthetic C3PPM AHT30 OHMM Unused NC4 PPM NC5 PPM PEF BJE
Bit Size Bit Size Bit Size Bit Size Bit Size Bit Size Bit Size
RHOB
1.2 1.2 1.4 15 1.6 1.7 1.8 14 2
| | ] | | ] ] | ]
— 11330
- 11400 Q
-1z ||~ Em
I =
-~
£ L
=]
- 11440
o
-~
- 11460
&
-~
x 11480




Advantages of Al in Petrophysical Analysis

* Al doesn’t require prior knowledge of the petrophysical
response equations

« Al is self-calibrating. Just give it the data
« Al avoids the problem of “rubbish in, rubbish out’,
— by ignoring noise and outliers



Linear Regression

* Al finds relationships in the data in order to make predictions
 Least squares regression is often used

 This minimises the sum total of the square of the errors




Linear Regression

L east squares regression is undemocratic

: . ®
 Qutliers unfairly influence the result error

« A point 10 times further from the line has 10Ay
a 100x the weighting

* It is very difficult to manually remove
these and would introduce human bias 5

 Qutliers may be valid data

 Best keep them and minimise the linear 0( »
distance rather than the squared distance

O1
—a
@

« Random noise should be swamped by
valid data



Advantages of Al in Petrophysical Analysis

* Al doesn’t require prior knowledge of the petrophysical
response equations

« Al is self-calibrating. Just give it the data

« Al avoids the problem of “rubbish in, rubbish out’,
— by ignoring noise and outliers

* There is very little user intervention
— There are no parameters to pick or cross-plots to make

« Al programs work with an unlimited number of electrical logs,
core and gas chromatography data; and don't ‘fall-over’ if
some of those inputs are missing

* Itis not a Black Box as it provides insights into how it makes
predictions



Narrow vs. General Al

« Narrow Al is like apps on your smart phone
— Forecasts the weather, converts currencies
— Orders coffee for you

« General Al, like humans can do many things
— Play chess and do petrophysical analysis

« General Al
— Learns from one specialist area and applies in another

— They will be genuinely creative with the ability to produce
something original and new

— General Al 1s True Al



Third Generation Al

« Al programs currently being developed include ones
where their machine code evolves, using similar rules
used by life’s DNA code



Evolution in Nature

« Charles Darwin - The origin of species by means of natural
selection

 DNA language code - 4 characters - A, T, C, G

Mutation and mating

DNA
Code

G S1ival of the fittest




Evolution in Nature

* Feedback loop — takes millions of years

# Mutation and mating

The fittest

h Survival of the fittest

* Less fit

Extinction

DNA
Code




Third Generation Al

« Just define the problem to be solved — Fitness Function
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Third Generation Al

« Let the machine code mutate and mate using the Rules of Life

Change code
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Al requirements

* Data
* Fitness Function
— Tells the Al what you want it to do
— Written in plain English
— Does the Al understand what you really want?



King Midas and his golden touch

King Midas, in Greek mythology, was granted his wish that
everything he touched into gold

He didn’t realise that this included his food and his children

Similarly an ill-conceived Fitness Function may give
unexpected results




The sorcerer’s apprentice

The apprentice uses magic to get a broom carry water for him
Unfortunately it runs-away and nearly drowns him

Similarly a runaway Al may not be stoppable

An example from petrophysics




Example of Runaway Al

« History matching

« Fitness Function — “get the best match as fast as possible”




Example of Runaway Al

By trial and error the computer will evolve a fast history match
Any endeavour succeeds faster if you increase its resources

A human programmer / hacker may co-opt the resources of
other network computers to achieve the faster speed

There is no reason why Al couldn’t also doing this

If Al achieves this ‘by accident’- there is nothing to stop it doing
It again and again

Evolution takes millions of years

The computer makes millions of iterations per second



Runaway Al

The Al may ‘accidently’ start improving exponentially
A supercomputer isn’t required to do this

An elaborate computer program isn’t required

— Only one that can update its own machine code

— Only one with an ill-judged Fitness Function

This is known as the singularity where artificial intelligence
becomes uncontrollable and irreversible

The chances of this happening may be as remote as life
spontaneously occurring

Al has only to do this once
It is not known how to stop computers with run away evolution



The Dangers of Al

Professor Stephen Hawking (University of Cambridge Professor)
— “Efforts to create thinking machines pose a threat to our very existence”

Bill Gates (Microsoft co-founder)
— “Humans should be worried about the threat posed by artificial Intelligence”

Nick Bostrom (University of Oxford Professor)
— “We're like children playing with a bomb”

Elon Musk (SpaceX founder)
— “Al needs safety measures before something terrible happens”



Solution to Runaway Al

These Al programs pose considerable dangers far beyond the
oll industry

A ‘risk assessment’ is essential on all Al programs so that all
hazards and risk factors, that could cause harm, are identified
and mitigated

The possibility of a runway Al, in the near term, IS remote

But the consequences could be greater than climate change
and nuclear proliferation

A risk assessment need only take a few minutes

Al programs are potentially dangerous and may be the last
thing humans invent



Conclusions

« Al can make petrophysical analysis very easy

« Al can be very dangerous
— Al program development should include a risk assessment

* Questions?



