AFES 2016 Seminar on Cased Hole Logging

RAPTOR TOOL
Case Studies from a Next Generation Pulsed Neutron Tool

Wireline interpretation & processing services

20th April 2016

Roberto Rinaldi
Geoscientist
RAPTOR TOOL

- Largest detector array
- LaBr3 detectors
- High speed electronics
- Fast neutron detector
RAPTOR TOOL

- Single-well, high-fidelity response characterization for CO, N-Vision, and Sigma

- **Each well** is characterized for:
 - Hole size
 - Casing size, weight
 - Sand, Lime, Dolomite
 - Borehole fluid density/salinity
 - Formation oil density
 - Tubing strings
 - Tubing/annulus fluids
RAPTOR TOOL

- Calibrates the **tool sensitivity**
- Calibrates the **tool** to the **characterization**
 - CO
 - NVision
Applications

- CO – Oil Saturation
- SIGMA – Water Saturation
- Nvision – Gas Saturation
- Lithology Identification
- Water Flow
- Borehole holdup
- Gravel Pack evaluation
Gas “Saturation” techniques

- Density-Neutron Crossover (OH)
- Sigma (CH)
- Carbon-Oxygen (CH)
- Pulsed Neutron Curve Overlays (CH)
RAPTOR TOOL: Example 1

Are the zones with low Sigma, low CPOR and Low Burst ratio
- Gas zones or
- Very low porosity?
This problem solved by Scheibal (SHELL) et al in 1992 and published in “Formation Evaluation” 1996 SPE 24737

A simple burst ratio Vs near burst count overlay
RAPTOR TOOL: Example 1

2 detector tool response

Gas

Tight
RAPTOR TOOL: Example 1

4 detector tool response

Gas

Oil

Tight
RACTOR TOOL: Example 2

Raptor was used onshore and offshore Adriatic on several wells with the following objectives:

- **Identify the gas-water contact in the formation**
- **Construct the gas saturation profile over the logged intervals**

Field Trials of a New Array Pulsed Neutron Formation Evaluation Gas measurement in Complex Completions
11th Offshore Mediterranean Conference and Exhibition in Ravenna, Italy, March 2013
RAPTOR TOOL: Example 2

RAPTOR TOOL

VIRGIN LEVEL

PRODUCED LEVEL

Open Hole

<table>
<thead>
<tr>
<th>DEPT</th>
<th>M</th>
<th>0.0</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0.0</td>
<td></td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1.0</td>
<td></td>
<td>150.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Coherence

<table>
<thead>
<tr>
<th>DEPT</th>
<th>40.0</th>
<th>Fluid Line</th>
<th>0.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0</td>
<td>140.0</td>
<td>Gas Line</td>
<td>0.0</td>
</tr>
<tr>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>140.0</td>
<td>Gas Curve</td>
<td>0.0</td>
<td></td>
</tr>
</tbody>
</table>

Saturation

<table>
<thead>
<tr>
<th>DEPT</th>
<th>0.0</th>
<th>Gas Saturation</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td></td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>0.0</td>
<td>140.0</td>
<td>OH Water Saturation</td>
<td>0.0</td>
</tr>
<tr>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>140.0</td>
<td>OH Gas Volume</td>
<td>0.0</td>
</tr>
<tr>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0</td>
<td>1.0</td>
<td>OH SW Volume</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Pore Volume

<table>
<thead>
<tr>
<th>DEPT</th>
<th>0.0</th>
<th>OH Gas Volume</th>
<th>0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td></td>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td>0.5</td>
<td>140.0</td>
<td>OH Fluid Volume</td>
<td>0.0</td>
</tr>
<tr>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0</td>
<td>1.0</td>
<td>OH SW Volume</td>
<td>0.0</td>
</tr>
</tbody>
</table>
RAPTOR TOOL: Example 2

APPARENT PORE DENSITY CHANGE

GAS FLASHING EFFECT

RAPTOR GAS SATURATION COHERENT TO PNC
Quantifying Gas Saturation with Pulsed Neutron Logging – An Innovative Approach

Mamdouh N. Al-Nasser, S. Mark Ma, SPE, Nedhal M. Al-Mushrafi, SPE and Ahmed S. Al-Muthana, SPE; Saudi Aramco; Steve Riley, Abel I. Geevarghese, SPE; Weatherford International. SPE 166025

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Relative sensitivity</th>
<th>Merit figure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sigma</td>
<td>MDPN NB</td>
</tr>
<tr>
<td>pyrite</td>
<td>26.12308</td>
<td>0.246568</td>
</tr>
<tr>
<td>siderite</td>
<td>14.55385</td>
<td>0.544351</td>
</tr>
<tr>
<td>kaolinite</td>
<td>2.4</td>
<td>0.649419</td>
</tr>
<tr>
<td>chlorite</td>
<td>3.230769</td>
<td>0.722281</td>
</tr>
</tbody>
</table>
Surveillance of Complex Displacement Mechanisms in Mature Reservoirs to Maximize Recovery

Adrian Zett, Mike Webster, Hilary Rose – BP
Steve Riley, Darryl Trcka, Nilesh Kadam – Weatherford. SPE 159185
References

Differentiation of Hydrocarbon Type in Gulf of Mexico Clastic Reservoirs by Inelastic Pulsed Neutron Capture Data
Schebal, J.R.; Welland J.L., (Shell Offshore Inc.); Worrell, J.M. (Atlas Wireline Services); Bayer J.E., Shell Offshore Inc.
SPE Formation Evaluation, June 1996

Field Trials of a New Array Pulsed Neutron Formation Evaluation Gas measurement in Complex Completions
11th Offshore Mediterranean Conference and Exibition in Ravenna, Italy, March 2013

Quantifying Gas Saturation with Pulsed Neutron Logging – An Innovative Approach
Mamdouh N. Al-Nasser, S. Mark Ma, SPE, Nedhal M. Al-Mushrafi, SPE and Ahmed S. Al-Muthana, SPE; Saudi Aramco; Steve Riley, Abel I. Geevarghese, SPE; Weatherford International. SPE 166025

Surveillance of Complex Displacement Mechanisms in Mature Reservoirs to Maximize Recovery
Adrian Zett, Mike Webster, Hilary Rose – BP
Steve Riley, Darryl Trcka, Nilesh Kadam – Weatherford. SPE 159185