

Pulsed Neutron Water Flow Detection

David Lavery

Formation & Reservoir Solutions

MATURE FIELDS

DEEP WATER

Oxygen Activation Theory

Oxygen Activation Theory

The magnitude of the oxygen activation response is a function of:

The distance of the flowing oxygen from the tool

The flow velocity relative to the tool

The volume of water flowing past the tool

The Problem

Pulsed Neutron Tool String- Run One (Inverted)

Oxygen Activation Stationary Stops

Oxygen Activation Stationary Stops

Oxygen Activation Results – Run One (Inverted)

Pulsed Neutron Compton Ratio

$Compton Ratio, CRAT = \frac{OAI}{OBI}$

OAI vs Spinner - 5000bbd Injection

Pulsed Neutron Tool String- Run Two (Standard)

OAI vs Spinner – 9000bbd Injection

© 2015 HALLIBURTON. ALL RIGHTS RESERVED.

Observations and Conclusions

- Characterisation of the pulsed neutron tool oxygen activation response allowed for a more accurate interpretation of the water flow rates.
- The flexibility of running the tool in inverted and standard mode allows for detection of water flow in both directions.
- Up flow was detected predominantly on the outside of the liner using pulsed neutron oxygen activation

