

Production Logging: Conventional Tool vs Array Tool Interpretation

Ross Brackenridge Software Product Expert

LR-Senergy

Agenda

- Background
- Brief Overview of PL Array Tools
- Typical PL Workflow
- Comparison of Conventional Vs Array Tool Workflows
- Conclusions/Key Lessons

Background

- IP is a complete well data interpretation package with around 2000 licenses worldwide
- A wide range of interpretation modules include a Production Logging analysis (PL) module
- PL module recently upgraded to accommodate Array Tools (initially MAPS)

Deviated/Horizontal Production

Overview of Array Tools

MAPS - Courtesy GE Oil & Gas

MAPS - Courtesy GE Oil & Gas

Multiphase Array Production Tool - Courtesy Spartek Systems

Typical PL Interpretation Workflow

1) Interpretation Setup

2) Data Import

3)Data QC/Edit

4)Holdup (Fluid Types) Determination

5) Fluid Velocity Calculation

6) PVT Calculations

7) Flow Rate Calculation

8) Reporting and Presenting

Set Up

 Tool Selection Updates Workflow

PLT database set-	up	
Run/Tool Units	Conditions	Reservoir Zone
Run number	1	
Run date	13 Apr 2016	; 🛛 🖛
Include date	in units as: 4	Apr 16
Tool Type		
Sondex: MAPS	s	-
Schlumberger:		
Schlumberger:		
Baker-Atlas: S	PL with FDEN	
Schlumberger:	CPLT	
Memory Tool v		I
SciDrill with NF		
SciDrill MPLT		
AI Sondex: MAPS		
CISciDrill with TF	-	
seSchlumberger:	PSP	

PL Tool List

Conventional PL Workflow

Set Up

• Tool Geometry Setup

Baker-Atlas: SPL with FDEN
Tool diameter 1.6900 inches
Spinner diameter 0.70 inches Pipe inside diameter 6.184 inches
Conventional PL Tool
Geometry

💦 Ar	ray Flow Calculations - I	MAPS31								
Input	s Tool Parameters	Output Curves	Zones F	Results	Surface Match	Slippage				
	Tool Parameters				SAT CAT	RAT				
	Number of Segment	s 5								
	Casing ID	6.184				5				
	Tool OD	1.6875	;		1					
	Mini-Spinner OD	0.6								
	Mini-Spinner stando	ff 0.5								
	RAT Sensor OD	0.25								
	RAT Sensor stando	ff 0.5								
	CAT Sensor OD	0.25								
	CAT Sensor stando	ff 0.5								
	Dimensio	ons in inches				2				

Array Tool Geometry Setup

Data Import

- Typical Conv PL pass = @15 curves
- Typical Array PL Pass = @ 80 curves

Easy Loading of multiple LAS/ASCII files

- Switch on/off required curves
- Rename Groups of incoming curves
- Load multiple passes simultaneously
- Settings only required on first incoming file

	:		11497.25 t	o 16599.00 @ 4.00 s	ample(s) pe	r ft			
Name	Description	PL Name	Units	Sensor	Load	•	Reset the PL Nam	es from the inn	ut file
TEMP	Downhole Temperature	TEMP	degC	Temperature	Yes				
CWH	Capacitance Water Holdup	CWH_	Hz	Capacitance	Yes		Fill data gaps : Maxi		
RATMN01	RAT Mean 01	RA01		RAT 1 to 12	Yes		Don't prompt to over	write existing cl	irves
RATMN02	RAT Mean 02	RA02		RAT 1 to 12	Yes		Don't overwrite data	with absent dat	ta from LAS
RATMN03	RAT Mean 03	RA03		RAT 1 to 12	Yes	-	Sensor	Input par	ne Map to
RATMN04	RAT Mean 04	RA04		RAT 1 to 12	Yes		Spinners 1 to 6	SPIN	SPI
RATMN05	RAT Mean 05	RA05		RAT 1 to 12	Yes		CAT 1 to 12	NCAP	CA
RATMN06	RAT Mean 06	RA06		RAT 1 to 12	Yes		RAT 1 to 12	RATMN	RA
RATMN07	RAT Mean 07	RA07		RAT 1 to 12	Yes				
RATMN08	RAT Mean 08	RA08		RAT 1 to 12	Yes				
RATMN09	RAT Mean 09	RA09		RAT 1 to 12	Yes		Apply mapping		
	DAT Moon 10	DA10		DAT 1 to 12	Voc	Ŧ			
4 #1		ut File / nass defin	aition						
5 ~1	Non standard L. Ing Well Informati TRT.FT	ut File / pass defir Build extensior		nput filename					
5~1 6 S 7 S	Well Informati TRT.FT TOP.FT	Build extension			Direction Pa	iss	Extension		
5~1 65 75 85	Well Informati TRT.FT TOP.FT TEP.FT			Condition [Direction Pa	ISS	Extension S1D1		
5~1 65 75 85 910 100	Well Informati TRT.FT TOP.FT TEP.FT ULL. OMP.	Build extension		Condition D S1 D		iss			
5~1 65 75 85 910 100 11 W	Well Informati TRT.FT TOP.FT TEP.FT ULL. OMP. ELL.	Build extension Input file name SCD1_30.LAS		Condition D S1 D S1 D	OWN 1	iss	S1D1		
5~ 65 75 85 910 100 111 12 F	Well Informati TRT.FT TOP.FT TEP.FT ULL. OMP. ELL. LD. OC.	Build extension nput file name GCD1_30.LAS GCD2_45.LAS GCD3_60.LAS GCU1_30.LAS		Condition D S1 D S1 D S1 D	DOWN 1 DOWN 2	iss	S1D1 S1D2		
5 ~~(6 S 7 S 9 N 10 C 11 W 12 F 13 L 14 C	Well Informati TRT.FT TOP.FT TEP.FT ULL. OMP. ELL. LD. OC. NTY.	Build extension input file name GCD1_30.LAS GCD2_45.LAS GCD3_60.LAS GCU1_30.LAS GCU1_30.LAS GCU2_45.LAS		Condition D S1 D S1 D S1 D S1 D S1 U S1 U	DOWN 1 DOWN 2 DOWN 3 JP 1 JP 2	iss	S1D1 S1D2 S1D3 S1U1 S1U2		
5 ~~ 6 S 7 S 9 N 10 C 11 W 12 F 13 L 14 C 15 S	Well Informati TRT.FT TOP.FT TEP.FT ULL. OMP. ELL. LD. OC. NTY. RVC.	Build extension nput file name GCD1_30.LAS GCD2_45.LAS GCD3_60.LAS GCU1_30.LAS		Condition D S1 D S1 D S1 D S1 D S1 U S1 U	DOWN 1 DOWN 2 DOWN 3 JP 1	iss	S1D1 S1D2 S1D3 S1U1		
5 ~~ 6 S 7 S 9 N 10 C 11 W 12 F 13 L 14 C 15 S	Well Informati TRT.FT TOP.FT TEP.FT ULL. OMP. ELL. LD. OC. NTY. RVC. ATE.	Build extension input file name GCD1_30.LAS GCD2_45.LAS GCD3_60.LAS GCU1_30.LAS GCU1_30.LAS GCU2_45.LAS		Condition D S1 D S1 D S1 D S1 D S1 U S1 U	DOWN 1 DOWN 2 DOWN 3 JP 1 JP 2	ISS	S1D1 S1D2 S1D3 S1U1 S1U2		
5 ~~ 6 S 7 S 8 S 10 C 11 W 12 F 13 L 14 C 15 S 16 D 17 U 18 S	Well Informati TRT.FT TOP.FT TEP.FT ULL. OMP. ELL. LD. OC. NTY. RVC. ATE. WI. TAT.	Build extension input file name GCD1_30.LAS GCD2_45.LAS GCD3_60.LAS GCU1_30.LAS GCU1_30.LAS GCU2_45.LAS		Condition D S1 D S1 D S1 D S1 D S1 U S1 U	DOWN 1 DOWN 2 DOWN 3 JP 1 JP 2	ISS	S1D1 S1D2 S1D3 S1U1 S1U2		
5 ~~ 6 S 7 S 8 S 10 C 11 W 12 F 13 L 13 L 14 C 15 S 16 D 17 U	Well Informati TRT.FT TOP.FT TEP.FT ULL. OMP. ELL. LD. OC. NTY. RVC. ATE. WI. TAT.	Build extension input file name GCD1_30.LAS GCD2_45.LAS GCD3_60.LAS GCU1_30.LAS GCU1_30.LAS GCU2_45.LAS		Condition D S1 D S1 D S1 D S1 D S1 U S1 U	DOWN 1 DOWN 2 DOWN 3 JP 1 JP 2	iss	S1D1 S1D2 S1D3 S1U1 S1U2		

Data QC/Edit

- Autoplot all data from all passes
- Conv. PL QC can fit on one screen
- Array PL requires multiple auto-plots
- Easy Switch between plots

Data QC/Edit

- Shifting, Editing, and Filtering
- Array tool data typically of lower quality than conventional sensors
- May require more filtering and edit than Conv PL data
- New Normalization Tools created for CAT/RAT

Data QC/Edit

• New Normalization Tools created for CAT/RAT

23

Select input curves CA01P1D1

CA01P1U1

CAT/RAT Normalize

Select sensor type

CAT ORAT

CA01 CA02

CA03

Holdup (Fluid Type) Determination

New Array Holdup Calculation Tool

- Applied to CAT and RAT data
- Images corrected for tool rotations
- Enter Holdup End Points
- De-select any bad sensors
- Select Passes to be used
- Holdup Array for each Pass
- Averaged Hold Up Array
- Top/Mid/Bot Hold ups
- BH Volume weighted Holdup

Fluid Velocity Calculation

Spinner X-plots

- Used to calculate Slope and Threshold (Sensitivity) of each individual spinner
- Conv PL Workflow = 2 xplots, Array PL workflow = * plots
- Spinners must be calibrated independently and cannot be averaged first
- New version of module will use holdup array to discriminate for fluids
- Additional tools will be required to calibrate MAPS spinners to each fluid

Fluid Velocity Calculation

• Conventional PL workflow can calculate continuous Spinner sensitivity at every depth during flowing, Two reasons this cannot be done with Array data -

Fluid Velocity Calculation

• New Array Velocity Images Tool

PVT

 No significant change to PVT calculations

PVT prope	rties for field: VA	SQUEZ BEGGS	; ;	
		A	в	С
Top depth		12000.0	13500.0	15500.0
Temperature	(deg F)	75.64	77.10	77.95
Pressure	(psia)	1883.50	1925.91	1952.11
Gas FVF	(cuft/scf)	0.005809	0.011865	-0.243175
Gas density	(g/cc)	0.1474	0.0722	0.0000
Gas viscosity	(cp)	0.0172	0.0130	0.0108
Oil FVF	(rb/stb)	1.201	1.206	1.210
Dis. gas/oil	(scf/stb)	408.8	418.0	423.7
Oil density	(g/cc)	0.7595	0.7573	0.7560
Oil viscosity	(cp)	3.2216	3.0136	2.9000
Water FVF	(rbw/stbw)	0.996	0.996	0.996
Dis. gas/Water	(scf/stb)	0.0	0.0	0.0
Water density	(g/cc)	1.0418	1.0416	1.0415
Water viscosity	(cp)	0.9815	0.9640	0.9541

- Conventional Analysis uses Single holdup and velocity values to calculate flowrates
- Using Array Holdups and Array Velocity requited a brand new module

5	限 Arra	y Flow Calculati	ions - MAPS97		- • ×
[Inputs	Tool Parameters	Output Curves Zones Result	s Surface Match Slippage	
	G	Options			
		Tool type	MAPS -		
		Model	Oil / Water	🔘 Gas / Water	
	1	Water Holdup	Capacitance array tool (CAT)	Resistivity array tool (RAT)	
		Flow Shading	Gas Red / Oil Green	◎ Gas Green / Oil Red	

Input Curves

Gamma Ray	PL_R01_01:GRP1U1		
SAT Velocity Image	PL_R01_01:VATAP1AV		
CAT Holdup Image	PL_R01_01:CATAP1AV		
RAT Holdup Image	PL_R01_01:RATAP1AV		
Deviation			
Perforations	PL_R01_01:PERFS		
Temperature	PL_R01_01:TEMPP1R1		
Pressure	PL_R01_01:QPP1R1		
Water FVF	PL_R01_01:FVFWP1R1		
Oil FVF	PL_R01_01:FVFOP1R1		
Gas FVF	PL_R01_01:FVFGP1R1		
GOR	PL_R01_01:GOR_P1R1		
GWR	PL_R01_01:GWR_P1R1		
Gas Density	PL_R01_01:DENGP1R1		
Oil Density	PL_R01_01:DENOP1R1		
Water Density	PL_R01_01:DENWP1R1		
Oil/Water Surface Tension	PL_R01_01:STOWP1R1		
Curve Set - Condition		Prost Gara	
Curve Set - Condition	PL_R01_01 - P1 Plot All	Report Close	He

Select number of vertical borehole segments, A balance is required..

Low number allows more 'real' data in each segment average but can also increase influence of slippage High number creates smoother results and reduces affects of slippage but can result in heavily interpolated segments

Slippage

- The option to apply slippage correction has been retained in the Array workflow but required modification
- Traditional slippage correction applies to whole borehole, Array workflow slippage only required in Mixed fluid Segments
- Weighting of Dominant Fluid must be considered
- Slippage Corrected fluid velocities of each fluid must add up to measured average
- New correction is generally small but ٠ could be more significant if large segments used in a gas/water well.

Deviated Well Slippage only in Mixed Segments

Low or Zero Slippage

GAS

GAS

WATER

Results Plot

Depth	Perfs	Flow	Calc	Gamma Ray	Velocity	Holdup	Water Flow	Oil Flow	Production	Zonal Production	Incremental Prod.
DEPTH (FT)	PERFS 0. — 1. Perforat	PL_R01_0	aCalcInt 0. — 1.	PL_R01_01:GRP1U1 0 1024.	PL_R01_01:aVelSegP1R1 -50 200	PL_R01_01:aWHUSegP1R1 1 0 PL_R01_01:aVelSegP1R1 180 0	PL R01_01:aQWatSegP1R1 -200 1000	PL R01_01:aQOilSegP1R1 -100 1400	PL R01 01:aOOilP1R1 (rb/d)	PL_R01_01:aQWatZP1R1 -1000. — 10000. PL_R01_01:aQOilZP1R1 -1000. — 10000.	PL_R01_01:aQWatIZP1R1 0 3000 PL_R01_01:aQOilIZP1R1 0 3000
12000		A									
4000-		B1 B2						1			
15000-		C1 C2									
6000-		D									

- Comparing results to surface
- Fine Tuning Options:

Incremental Prod.

PL_R01_01:aQWatIZP1R1

PL_R01_01;aQOilIZP1R1

3000.

3000.

· 10000.

10000.

Reporting and Presenting

- Auto-Reporting
- Automated Log Plots
- Borehole cross sections
- 3D Viewer
- Collaborate with other data types

Conclusions/Key Lessons?

Key Lessons will creating the PL Array workflow

- Logging program is key to a good dataset and successful interpretation
- Large amount of data requires higher level of data management and functionality Usability must be maintained!
- Array Workflow has more emphasis on real data rather than models/charts
- Understanding Sensor Position and Tool rotation throughout is key to a successful interpretation
- Use of averages whenever possible (between passes, across borehole segments and over depth) improves data quality and result accuracy
- Completely new method for holdup calculation weighted holdup dependant on sensor position
- Tools need to improve on distributed gas holdup measurements to allow accurate 3-phase analysis
- Updated method required for Spinner Calibration/Velocity calculation to account for spinner position/holdup
- Completely new sub-module was required for calculating Flowrates based on segments of the borehole rather than the centred data

IP Production Logging Software

Website: <u>http://www.lr-senergy.com/software</u> Email: Ross.Brackenridge@lr-senergy.com

