Production Logging: Conventional Tool vs Array Tool
Interpretation

Ross Brackenridge
Software Product Expert
LR-Senergy
Agenda

• Background
• Brief Overview of PL Array Tools
• Typical PL Workflow
• Comparison of Conventional Vs Array Tool Workflows
• Conclusions/Key Lessons
Background

- IP is a complete well data interpretation package with around 2000 licenses worldwide.
- A wide range of interpretation modules include a Production Logging analysis (PL) module.
- PL module recently upgraded to accommodate Array Tools (initially MAPS).
Deviated/Horizontal Production
Overview of Array Tools

MAPS - Courtesy GE Oil & Gas

MAPS - Courtesy GE Oil & Gas

Multiphase Array Production Tool - Courtesy Spartek Systems
Typical PL Interpretation Workflow

1) Interpretation Setup
2) Data Import
3) Data QC/Edit
4) Holdup (Fluid Types) Determination
5) Fluid Velocity Calculation
6) PVT Calculations
7) Flow Rate Calculation
8) Reporting and Presenting
Set Up

• Tool Selection Updates Workflow

PL Tool List

Conventional PL Workflow

MAPS Workflow
Set Up

• Tool Geometry Setup

Conventional PL Tool Geometry

Array Tool Geometry Setup
Data Import

- Typical Conv PL pass = @15 curves
- Typical Array PL Pass = @80 curves

Easy Loading of multiple LAS/ASCII files

- Switch on/off required curves
- Rename Groups of incoming curves
- Load multiple passes simultaneously
- Settings only required on first incoming file
Data QC/Ed

- Autoplot all data from all passes
- Conv. PL QC can fit on one screen
- Array PL requires multiple auto-plots
- Easy Switch between plots
Data QC/Edit

- Shifting, Editing, and Filtering
- Array tool data typically of lower quality than conventional sensors
- May require more filtering and edit than Conv PL data
- New Normalization Tools created for CAT/RAT
Data QC/Edit

• New Normalization Tools created for CAT/RAT

Un-Normalised CAT data

Normalised CAT data
Holdup (Fluid Type) Determination

New Array Holdup Calculation Tool

- Applied to CAT and RAT data
- Images corrected for tool rotations
- Enter Holdup End Points
- De-select any bad sensors
- Select Passes to be used
- Holdup Array for each Pass
- Averaged Hold Up Array
- Top/Mid/Bot Hold ups
- BH Volume weighted Holdup
Fluid Velocity Calculation

Spinner X-plots
• Used to calculate Slope and Threshold (Sensitivity) of each individual spinner
• Conv PL Workflow = 2 x-plots, Array PL workflow = * plots
• Spinners must be calibrated independently and cannot be averaged first
• New version of module will use holdup array to discriminate for fluids
• Additional tools will be required to calibrate MAPS spinners to each fluid
Fluid Velocity Calculation

- Conventional PL workflow can calculate continuous Spinner sensitivity at every depth during flowing. Two reasons this cannot be done with Array data -

1) At each depth each spinner could be in different mix of fluid

2) Logging programs often only have 1Up/1Dn Passes over full interval due to conveyance and time limitations—Calibration must be done on shorter sections with at least 3Up/3Dn passes
Fluid Velocity Calculation

- New Array Velocity Images Tool
PVT

- No significant change to PVT calculations
Flowrate Calculation

- Conventional Analysis uses Single holdup and velocity values to calculate flowrates
- Using Array Holdups and Array Velocity required a brand new module
Flowrate Calculation

Select number of vertical borehole segments, A balance is required.

Low number allows more ‘real’ data in each segment average but can also increase influence of slippage.

High number creates smoother results and reduces affects of slippage but can result in heavily interpolated segments.
Flowrate Calculation

Slippage

• The option to apply slippage correction has been retained in the Array workflow but required modification
• Traditional slippage correction applies to whole borehole, Array workflow slippage only required in Mixed fluid Segments
• Weighting of Dominant Fluid must be considered
• Slippage Corrected fluid velocities of each fluid must add up to measured average
• New correction is generally small but could be more significant if large segments used in a gas/water well.
Flowrate Calculation

- Results Plot

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Water Flow</th>
<th>Oil Flow</th>
<th>Production</th>
<th>Zonal Production</th>
<th>Incremental Prod.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>100</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>100</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>150</td>
<td>1500</td>
<td>1500</td>
<td>1500</td>
<td>1500</td>
<td>1500</td>
</tr>
<tr>
<td>250</td>
<td>2500</td>
<td>2500</td>
<td>2500</td>
<td>2500</td>
<td>2500</td>
</tr>
<tr>
<td>300</td>
<td>3000</td>
<td>3000</td>
<td>3000</td>
<td>3000</td>
<td>3000</td>
</tr>
</tbody>
</table>

The figure includes a color-coded map representing various layers and their properties such as water flow, oil flow, production, zonal production, and incremental production.
Flowrate Calculation

- Comparing results to surface
- Fine Tuning Options:
 - Velocity Multiplier
 - Holdup Adjustments
 - Slippage Adjustment

Interactively Move, Add or Split Calculations
Instant Update of Results
Reporting and Presenting

• Auto-Reporting
• Automated Log Plots
• Borehole cross sections
• 3D Viewer
• Collaborate with other data types
Conclusions/Key Lessons?

Key Lessons will creating the PL Array workflow

• Logging program is key to a good dataset and successful interpretation
• Large amount of data requires higher level of data management and functionality – Usability must be maintained!
• Array Workflow has more emphasis on real data rather than models/charts
• Understanding Sensor Position and Tool rotation throughout is key to a successful interpretation
• Use of averages whenever possible (between passes, across borehole segments and over depth) improves data quality and result accuracy
• Completely new method for holdup calculation – weighted holdup dependant on sensor position
• Tools need to improve on distributed gas holdup measurements to allow accurate 3-phase analysis
• Updated method required for Spinner Calibration/Velocity calculation to account for spinner position/holdup
• Completely new sub-module was required for calculating Flowrates based on segments of the borehole rather than the centred data
IP Production Logging Software

Website: http://www.lr-senergy.com/software
Email: Ross.Brackenridge@lr-senergy.com